# McGraw Hill Math Grade 6 Lesson 6.2 Answer Key Changing Mixed Numbers to Improper Fractions

Practice questions available in McGraw Hill Math Grade 6 Answer Key PDF Lesson 6.2 Changing Mixed Numbers to Improper Fractions will engage students and is a great way of informal assessment.

## McGraw-Hill Math Grade 6 Answer Key Lesson 6.2 Changing Mixed Numbers to Improper Fractions

Exercises
Change to Improper Fractions

Question 1.
2$$\frac{2}{3}$$
Improper fraction of 2$$\frac{2}{3}$$ = $$\frac{8}{3}$$

Explanation:
2$$\frac{2}{3}$$ = [(2 × 3) + 2] ÷ 3
= (6 + 2) ÷ 3
= $$\frac{8}{3}$$

Question 2.
5$$\frac{4}{7}$$
Improper fraction of 5$$\frac{4}{7}$$ = $$\frac{39}{7}$$

Explanation:
5$$\frac{4}{7}$$ = [(5 × 7) + 4)] ÷ 7
= (35 + 4) ÷ 7
= $$\frac{39}{7}$$

Question 3.
21$$\frac{3}{5}$$
Improper fraction of 21$$\frac{3}{5}$$ = $$\frac{108}{5}$$

Explanation:
21$$\frac{3}{5}$$ = [(21 × 5) + 3)] ÷ 5
= (105 + 3) ÷ 5
= $$\frac{108}{5}$$

Question 4.
5$$\frac{3}{8}$$
Improper fraction of 5$$\frac{3}{8}$$ =

Explanation:
5$$\frac{3}{8}$$ = [(5 × 8) + 3] ÷ 8
= (40 + 3) ÷ 8
= $$\frac{43}{8}$$

Question 5.
22$$\frac{6}{7}$$
Improper fraction of 22$$\frac{6}{7}$$ = $$\frac{160}{7}$$

Explanation:
22$$\frac{6}{7}$$ = [(22 × 7) + 6] ÷ 7
= (154 + 6) ÷ 7
= $$\frac{160}{7}$$

Question 6.
15$$\frac{4}{11}$$
Improper fraction of 5$$\frac{4}{11}$$ = $$\frac{59}{11}$$

Explanation:
5$$\frac{4}{11}$$ = [(5 × 11) + 4] ÷ 11
= (55 + 4) ÷ 11
= $$\frac{59}{11}$$

Question 7.
13$$\frac{2}{3}$$
Improper fraction of 13$$\frac{2}{3}$$ = $$\frac{41}{3}$$

Explanation:
13$$\frac{2}{3}$$ = [(13 × 3) + 2] ÷ 3
= (39 + 2) ÷ 3
= $$\frac{41}{3}$$

Question 8.
3$$\frac{11}{17}$$
Improper fraction of 3$$\frac{11}{17}$$ = $$\frac{62}{17}$$

Explanation:
3$$\frac{11}{17}$$ = [(3 × 17) + 11] ÷ 17
= (51 + 11) ÷ 17
= $$\frac{62}{17}$$

Question 9.
2$$\frac{4}{19}$$
Improper fraction of 2$$\frac{4}{19}$$ = $$\frac{42}{19}$$

Explanation:
2$$\frac{4}{19}$$ = [(2 × 19) + 4] ÷ 19
= (38 + 4) ÷ 19
= $$\frac{42}{19}$$

Question 10.
6$$\frac{3}{4}$$
Improper fraction of 6$$\frac{3}{4}$$ = $$\frac{27}{4}$$

Explanation:
6$$\frac{3}{4}$$ = [(6 × 4) + 3] ÷ 4
= (24 + 3) ÷ 4
= $$\frac{27}{4}$$

Question 11.
1$$\frac{1}{51}$$
Improper fraction of 1$$\frac{1}{51}$$ = $$\frac{52}{51}$$

Explanation:
1$$\frac{1}{51}$$ = [(1 × 51) + 1] ÷ 51
= (51 + 1) ÷ 51
= $$\frac{52}{51}$$

Question 12.
55$$\frac{1}{2}$$
Improper fraction of 55$$\frac{1}{2}$$ = $$\frac{111}{2}$$

Explanation:
55$$\frac{1}{2}$$ = [(55 × 2) + 1] ÷ 2
= (110 + 1) ÷ 2
= $$\frac{111}{2}$$

Question 13.
10$$\frac{2}{23}$$
Improper fraction of 10$$\frac{2}{23}$$ = $$\frac{232}{23}$$

Explanation:
10$$\frac{2}{23}$$ = [(10 × 23) + 2] ÷ 23
= (230 + 2) ÷ 23
= $$\frac{232}{23}$$

Question 14.
6$$\frac{4}{7}$$
Improper fraction of 6$$\frac{4}{7}$$ = $$\frac{46}{7}$$

Explanation:
6$$\frac{4}{7}$$ = [(6 × 7) + 4] ÷ 4
= (42 + 4) ÷ 4
= $$\frac{46}{7}$$

Question 15.
13$$\frac{2}{7}$$
Improper fraction of 13$$\frac{2}{7}$$ = $$\frac{93}{7}$$

Explanation:
13$$\frac{2}{7}$$ = [(13 × 7) + 2] ÷ 7
= [91 + 2) ÷ 7
= $$\frac{93}{7}$$

Question 16.
42$$\frac{1}{3}$$
Improper fraction of 42$$\frac{1}{3}$$ = $$\frac{127}{3}$$

Explanation:
42$$\frac{1}{3}$$ = [(42 × 3) + 1] ÷ 3
= (126 + 1) ÷ 3
= $$\frac{127}{3}$$

Question 17.
5$$\frac{1}{19}$$
Improper fraction of 5$$\frac{1}{19}$$ = $$\frac{96}{19}$$

Explanation:
5$$\frac{1}{19}$$ = [(5 × 19) + 1] ÷ 19
= (95 + 1) ÷ 19
= $$\frac{96}{19}$$

Question 18.
12$$\frac{2}{3}$$
Improper fraction of 12$$\frac{2}{3}$$ = $$\frac{38}{3}$$

Explanation:
12$$\frac{2}{3}$$ = [(12 × 3) + 2] ÷ 3
= (36 + 2) ÷ 3
= $$\frac{38}{3}$$

Question 19.
2$$\frac{3}{4}$$
Improper fraction of 2$$\frac{3}{4}$$ = $$\frac{11}{4}$$

Explanation:
2$$\frac{3}{4}$$ = [(2 × 4) + 3] ÷ 4
= (8 + 3) ÷ 4
= $$\frac{11}{4}$$

Question 20.
200$$\frac{33}{100}$$
Improper fraction of 200$$\frac{33}{100}$$ = $$\frac{20033}{100}$$
200$$\frac{33}{100}$$ = [(200 × 100) + 33] ÷ 100
= $$\frac{20033}{100}$$